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SUMMARY

This paper presents a general sensitivity equation method (SEM) for time dependent incompressible
laminar �ows. The formulation accounts for complex parameter dependence and is suitable for a wide
range of problems. The SEM formulation is veri�ed on a problem with a closed form solution. System-
atic grid convergence studies con�rm the theoretical rates of convergence in both space and time. The
methodology is then applied to pulsed �ow around a square cylinder. The �ow starts with symmetri-
cal vortex shedding then transitions to the traditional Von Karman street (alternate vortex shedding).
Simulations indicate that the transition phase manifests itself earlier in the sensitivity �elds than in the
�ow �eld itself. Sensitivities are then demonstrated for fast evaluation of nearby �ows and uncertainty
analysis. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

An engineer using CFD for design must answer two questions: are the �ow predictions
obtained with CFD accurate enough for design purposes? and what are the consequences
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of changing the parameters controlling the system (boundary conditions, shape parameters,
etc.)? This paper presents a general continuous sensitivity equation method for time-dependent
incompressible laminar �ows as a means of answering the latter question.
The former issue is best dealt with by systematic time-step and grid re�nement stud-

ies in a numerical analysis process called veri�cation [1] which proceeds in two steps:
code veri�cation followed by simulation veri�cation. Code veri�cation ensures, through grid
re�nement studies, that the discretization algorithm delivers the theoretical rate of convergence
on problems with a closed form solution. Simulation veri�cation entails grid error estimation
and grid re�nement studies to assess a simulation’s accuracy and its grid convergence. When-
ever possible veri�cation is followed by validation which assesses the physical suitability
of the mathematical model by comparing veri�ed predictions to quality measurements. See
Reference [1] for a thorough discussion.
A sensitivity is de�ned as the derivative of a dependent variable with respect to a model

parameter. For the �ow around an airfoil, @u=@� is the sensitivity of the velocity with respect
to the airfoil angle of attack. It expresses how the velocity �eld responds to perturbations
of � around its nominal value. Sensitivity information can also provide fast evaluation of
nearby �ows without resorting to a full blown �ow reanalysis. This is done via Taylor series
in parameter space, and is especially useful to answer what if questions for complex �ows.
Finally, sensitivity information can serve to cascade input data uncertainty through a CFD code
to yield uncertainty estimates of the �ow response. In both cases speed and cost-e�ectiveness
are achieved because sensitivities are obtained at a fraction of the cost of computing the �ow.
There are several means of computing �ow sensitivities: �nite di�erences of �ow solutions,

the complex step method [2], automatic di�erentiation [3], and sensitivity equation methods
(SEM) [4–6]. The �rst option is costly because the problem must be solved for two or more
values of each parameter of interest. Furthermore, technical problems arise because non-
matching meshes are obtained for di�erent values of a shape parameter. The complex-step
method is very e�ective. However, it requires a complete rewrite of the software in complex
variables. While this can be automated, it has a signi�cant impact on performance. Automatic
di�erentiation is equivalent to di�erentiating the discrete equations to generate a system of
equations for the discrete sensitivities. It is powerful because it automatically generates the
code for calculating sensitivities. In many cases, implementation requires human intervention
to ensure e�ciency of the code.
Approaches to calculating sensitivities also di�er depending on the order of the operations

of approximation and di�erentiation. In the discrete sensitivity equation approach, the total
derivative of the �ow approximation with respect to the parameter is calculated [7], whereas in
the continuous SEM one di�erentiates the continuum equations to yield di�erential equations
for the continuous sensitivities [4]. See Reference [8] for a discussion of the two approaches.
We have adopted the latter approach for several reasons. First, in the case of shape parameters,
it avoids the delicate issue of computing mesh sensitivities. Second, because the continuous
SEM works on the continuum equations, it avoids the issue of di�erentiating computational
facilitators [9] such as upwind schemes in �nite volume methods or stabilization terms in
�nite element formulations. Finally, the method has shown its robustness in optimization of
noisy cost functions [10].
Sensitivity analysis is a more advanced �eld in solid mechanics than in �uid dynamics.

Indeed, textbooks have been written on sensitivity analysis of structures [7, 8]. To our knowl-
edge there is only one book on sensitivity analysis of �ow problems [5]. It is recent and

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:817–844



A SENSITIVITY EQUATION METHOD FOR TIME-DEPENDENT FLOWS 819

more specialized than structural mechanics books. Also, Gunzburger [9] discusses sensitivity
analysis in the context of �ow control and optimization.
Automatic di�erentiation for �rst-order �ow sensitivities is discussed by Sherman [11]

and Putko [3]. Continuous SEMs may be found in References [4, 12–15] for aerodynamics
applications. Application to heat conduction is reported by Blackwell [16]. Sensitivities for
incompressible �ows with heat transfer may be found in several References [6, 17–19]. Sensi-
tivity analysis for turbulence models is detailed in the works by Godfrey [13] and by Turgeon
[20, 21]. A wide variety of �ow regimes were treated by the authors [6, 18, 19, 21–23]. This
body of work has shown that sensitivities provide an enriched base of information on which
to develop an understanding of complex �ow problems and gain insight into the �ow physics.
The work presented here is an extension, to time-dependent �ows, of the methodology devel-
oped previously for steady state �ows [6, 19].
The paper is organized as follows. First, we present the equations describing time-dependent

laminar �ow along with their boundary and initial conditions. The sensitivity equations and
their boundary=initial conditions are then described in detail. The methodology and its �nite
element solver are veri�ed on a problem possessing a closed form solution. Finally, we
apply the approach to pulsed �ow around a square cylinder. Several uses of sensitivities are
demonstrated. The paper ends with conclusions.

2. FLOW EQUATIONS

2.1. Navier–Stokes equations

The �ow regime of interest is modelled by the momentum and continuity equations

�̃
@ũ
@t̃
+ �̃ũ · ∇̃ũ = −∇̃p̃+ f̃ + ∇̃ · [�̃(∇̃ũ+ (∇̃ũ)T)] (1)

∇̃ · ũ = 0 (2)

where �̃ is the density, t̃ is the time, ũ is the velocity, p̃ is the pressure, �̃ is the viscosity,
and f̃ is a body force. The tilde ∼ denotes dimensional quantities.
The above system is closed with a proper set of initial conditions

ũ(x̃; t̃=0)= Ũ0( x̃) in � (3)

and Dirichlet and Neumann boundary conditions

ũ(x̃; t̃) = Ũb(x̃; t̃) on �D (4)

t̃ = [−p̃I+ �̃(∇̃ũ+ ∇̃ũT)] · n̂= F̃N on �N (5)

where � is the computational domain, Ũb is the value of the velocity imposed on the boundary
�D, I is the identity tensor, and F̃

N
is the boundary value of the surface traction force t̃ imposed

on the boundary segment �N, and n̂ is the outward unit normal to �N.
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We make the equations dimensionless by selecting reference quantities for all variables and
physical properties: L̃0, �̃0, �̃r , Ũr , p̃r = �̃rŨ

2
r and f̃r = �̃rŨ

2
r =L̃r . This leads to the following

dimensionless variables:

x=
x̃
L̃r
; y=

ỹ
L̃r
; u=

ũ
Ũr
; v=

ṽ
Ũr

p=
p̃
p̃r
; �=

�̃
�̃r
; �=

�̃
�̃r

For constant property �ows we have �=1 and �=1. Boundary conditions are normalized
in the same manner. This leads to the following dimensionless continuity and momentum
equations:

�
@u
@t
+ �u · ∇u = −∇p+ f +∇ ·

[ �
Re
(∇u+ (∇u)T)

]
(6)

∇ · u = 0 (7)

with initial conditions

u(x; t=0)=U0(x) in � (8)

and Dirichlet and Neumann boundary conditions

u(x; t) = Ub(x; t) on �D (9)

t = [−pI+ �(∇u+∇uT)] · n̂=FN on �N (10)

3. SENSITIVITY EQUATIONS

3.1. General formulation of sensitivity equations

The continuous sensitivity equations (CSE) are derived formally by implicit di�erentiation of
the �ow equations (6) and (7) with respect to an arbitrary model parameter a. We treat the
variable u as a function of both space and of the parameter a. This dependence is denoted
as u(x; a). De�ning the �ow sensitivities as the partial derivatives su= @u=@a and sp= @p=@a,
and denoting the derivatives of the �uid properties and other �ow parameters by a (′), dif-
ferentiation of Equations (6) and (7) yields

�′ @u
@t
+ �

@su
@t
+ �′u · ∇u+ �su · ∇u+ �u · ∇su =−∇sp + f ′ +∇ · [�′(∇u+ (∇u)T)

+�(∇su + (∇su)T)]

∇ · su =0
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3.2. Initial and boundary conditions

Initial conditions for the sensitivity equations are obtained by implicit di�erentiation of
Equations (8)

su(x; t=0)=
@U0
@a
(x) in � (11)

Dirichlet conditions are obtained in a similar manner. However, one must account for the fact
that the boundary segment �D may now depend on a. Thus, we write

u(xb(a); yb(a); a)=Ub(xb(a); yb(a); a) (12)

so that one must take the total derivative on both sides to obtain a Dirichlet boundary condition
for su

su(x; t; a)=
dUb
da
(x; t; a)− @u

@x
@xb
@a

− @u
@y
@yb
@a

on �D (13)

The �rst term on the right-hand side expresses the dependence of Ub on a, while @xb=@a
and @yb=@a are the shape sensitivities of the boundary segment. They vanish if a is a value
parameter. Note that the �ow gradient multiplies @xb=@a and @yb=@a. Thus, accurate boundary
conditions for a shape parameter require accurate evaluation of the �ow gradients at the
boundary, a challenging task because accuracy of �ow derivatives decreases near boundaries.
Duvigneau has developed promising techniques for extracting accurate �ow gradients at the
boundary [24, 25].
As an example, consider the case of an inlet channel of height a delivering a constant �ow

rate, V̇m2=s in 2-D, to a plenum independently of the value of a as shown on Figure 1.
We have

xb = 0

yb = ar

Ub =
6r(1− r)

a
V̇ r ∈ [0; 1]

y

a

0
x

Figure 1. Plenum geometry.
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where r is the parametric variable along the boundary and a is the model parameter. For this
case the coe�cients of Equation (13) are

@xb
@a
=0

@yb
@a

= r

dUb
da

=−6r(1− r)
a2

V̇

so that the boundary condition for su is

su=−6r(1− r)
a2

V̇ − @u
@y
r

If a increases, the channel becomes wider and the in�ow velocities decrease accordingly to
maintain a constant �ow rate at the inlet.
For a value parameter the geometry of the domain does not depend on a. Hence, @xb=@a

and @yb=@a vanish so that the boundary condition reduces to

su(x; t; a)=
@Ub
@a
(x; t; a) on �D (14)

Neumann boundary conditions for the sensitivity of the surface forces st= @t=@a given by

st=[−spI+ �(∇su +∇sTu ) + �′(∇u+∇uT)] · n̂+ [−pI+ �(∇u+∇uT)] · n̂′ (15)

are obtained by implicit di�erentiation of Equation (10)

st=
dFN

da
− {−∇p ·�bI+∇� ·�b(∇u+∇uT) + �A} · n̂ (16)

in which

�b =
(
@xb
@a
;
@yb
@a

)T
and the components of the matrix A are

a11 = 2
{
@2u
@x2

@xb
@a
+
@2u
@x@y

@yb
@a

}

a12 =
{
@2u
@x@y

@xb
@a
+
@2u
@y2

@yb
@a

}
+
{
@2v
@x2

@xb
@a
+
@2v
@x@y

@yb
@a

}

a21 = a12

a22 = 2
{
@2v
@x@y

@xb
@a
+
@2v
@y2

@yb
@a

}
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Note that both boundary conditions (13) and (16) require the evaluation of �rst or second
derivatives of the �ow at the wall. This constitutes an important challenge for the SEM as
numerical di�erentiation results in reduced accuracy of the boundary conditions and hence, of
the sensitivity solution also. Extracting accurate derivatives remains an open research question,
although some progress has been made [24, 25]. In the case of a value parameter, all geometric
derivatives vanish and Equation (16) yields the following simpli�ed Neumann conditions:

st=
@FN

@a
(x; t; a) on �N

4. IMPLEMENTATION

The �ow equations and the CSE are solved by a Galerkin �nite element method. Time is
discretized by an implicit Euler or a Crank–Nicholson scheme. The equations are linearized
with Newton’s method and discretized with the 7-node element using an enriched quadratic
polynomial for the velocity and a piecewise discontinuous linear approximation of pressure.
The same element is used to solve the sensitivity equations. Element matrices are constructed
using a numerical Jacobian technique and assembled in a skyline data structure. Global systems
for the �ow and sensitivities are solved by LU factorization because of its robustness. Iterative
methods could be used in place of the LU factorization. This would not change the results;
it would only a�ect the memory requirement and CPU time requirements. For large meshes
this would lead to signi�cant savings on both aspects.

5. NUMERICAL RESULTS

Two numerical experiments are performed. The �rst one uses the method of manufactured
solution (MMS) to verify the temporal and spatial accuracy of the �ow and sensitivity
solvers [1]. The second example is devoted to sensitivity analysis of time-dependent pulsed
�ow around a square cylinder.

5.1. Veri�cation

According to the de�nition of Roache [1], veri�cation is the process of ensuring that the
di�erential equations are solved correctly, making sure that the code delivers the appropriate
spatial and temporal rates of convergence on a problem with a known solution. The MMS
is used to develop such solution expressions. With an analytical solution at hand, one can
compute the error of the �nite element solution, and use grid re�nement studies to determine
the temporal and spatial rates of convergence produced by the algorithm implementation.
Direct di�erentiation of the manufactured solution provides closed form expressions for the
sensitivities. A grid convergence study is performed to assess the accuracy of the �ow and
sensitivity solutions. We use the following expressions for the velocity components taken from
the Stommel ocean �ow model [26]:

u(x; y) =
F

R
cos
(�y
b

)
[C1ek1x + C2ek2x − 1] (17)

v(x; y) =−b
�
F

R
sin
(�y
b

)
[C1k1ek1x + C2k2ek2x] (18)
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F D
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z

y x

F

(a) (b)

Figure 2. Flow pattern for ocean-like �ow problem: (a) �=0; and (b) � �= 0.

with

k1;2 =−D�
2R

±
√(

D�
2R

)2
+
(�
b

)2
(19)

and

C1 =
1− ek2�
ek1� − ek2� ; C2 =

ek1� − 1
ek1� − ek2� (20)

Figures 2(a) and (b) are sketches of the �ow �eld for �=0 and � �= 0. Also shown is the
shape of the wind force F. The original Stommel solution is for a steady-state �ow. By
taking

F=F sin(�t) (21)

we generate a time-dependent velocity �eld suitable for veri�cation. Finally, we choose the
pressure to be

p(x; y)=2�
@v
@y
=−2F

R
cos
(�y
b

)
[C1k1ek1x + C2k2ek2x] (22)

so that a zero normal traction (FNy =0) in Equation (10) may be imposed on the top and
bottom boundaries of the computational domain as shown in Figure 3. These expressions
are substituted in the Navier–Stokes equations to de�ne the body force f ensuring that the
momentum equations (6) are satis�ed. The meaning and values of the various parameters are
given in Table I. For simplicity, the length scale is taken as L∗= b=2�× 106 m while the
time-scale is T ∗=1=�L∗.
The computational domain and boundary conditions are shown on Figure 3. A grid and

time-step convergence study is carried out for the �ow and its sensitivities with respect to the
following two parameters: the Coriolis coe�cient � and the friction coe�cient R. Analytical
expressions for the sensitivities are obtained by direct di�erentiation of Equations (17)–(22).
The required source term f ′ in the sensitivity equations is obtained by di�erentiation of f
in Equation (6). The grid re�nement study reported here is performed for �=0. Similar
results were obtained with � �= 0. The mesh characteristics and time-step values used for

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:817–844
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x = 
S   , V = free

U
V

S   , U = free

S   , V = free
U
V

S   , U = free

U
V

S   , U = exact
S   , V = exact

U
V

S   , U = exact
S   , V = exact

North, y

East, x

y = b

y = 0
x = 0

Figure 3. Domain for veri�cation problem.

Table I. Parameters of the ‘ocean-like’ manufactured solution.

Parameter Dimensional Non-dimensional

Latitude, b 2�× 106 m 1:00
Longitude, � 107 m 1:59
Depth, D 200 m 3:1831× 10−5

Wind force, F 0:3× 10−5 m2 s−2 1:9249× 10−11

Friction coe�cient, R 0:6× 10−3 m s−1 1:5198× 10−6

Coriolis e�ect, � 10−11 m−1 s−1 1:00

Table II. Mesh characteristics for veri�cation problem.

Mesh Implicit Euler Crank–Nicholson

Nel Nnodes h N�t �t N�t �t

1 48 117 0.2098 5 0.05 5 0.05
2 192 425 0.1049 20 0.0125 10 0.025
3 768 1617 0.05245 80 0.003125 20 0.0125
4 3072 6305 0.026225 320 0.00078125 40 0.00625

the veri�cation problem are reported in Table II for the two schemes: �rst-order Euler and
second-order accurate Crank–Nicholson time-stepping schemes. The meshes are unstructured
grids of triangles of uniform size. The number of elements, nodes and the grid size h are given
in the table along with the number of time-steps and time-step size required for integration
of the unsteady Navier–Stokes equations from time t=0 to 0.25. With this data one expects
the true error evaluated at the �nal time of the simulation, to be reduced by a factor of 4
from one mesh to the next. This is achieved by setting

�t
h2
= 1:1359
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Figure 4. Veri�cation problem: convergence of u, p and their sensitivities: (a) u and its
sensitivities; and (b) p and its sensitivities.

for the Euler time integration scheme and

�t
h
=0:2383

for the Crank–Nicholson time integrator. Notice that the time-step size diminishes with h
much faster for the Euler scheme than the Crank–Nicholson scheme.
Figures 4(a) and (b) show the results for the velocity, the pressure and their sensitivities

with respect to � and R. The spatial errors in velocity and pressure are measured at the end
of the simulation (time t=0:25). We use the energy norm for u and the L2 norm for p

‖u‖2E =
∫
�
[∇u+ (∇u)T] : [∇u+ (∇u)T] dA (23)

‖p‖2L2 =
∫
�
p2 dA (24)

The colon represents the double contraction of two second-order tensors. For example, the
double contraction of tensors a and b is computed as

a : b=
∑
i

∑
j

ajibij

All error trajectories exhibit a slope of log(4) showing that the discretization schemes
for the �ow and sensitivity exhibit their theoretical rates of convergence: �rst-order in time
for implicit Euler, and second-order accuracy for the implicit Crank–Nicholson scheme and
second-order in space using norms given in Equations (23) and (24). Hence, the code is
veri�ed in the sense of Roache [1].
In the present case, the spatial error dominates over the temporal error. Thus the Euler and

Crank–Nicholson schemes exhibit the same levels of spatial errors. Because the time-step to
mesh size ratio is set to reduce both components (spatial and temporal) by a factor of 4,
the trajectories of the global errors for the two time integration schemes lie on top of each
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H
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(a) (b)

Figure 5. De�nition and mesh for pulsed �ow around a square cylinder: (a) domain
and boundary conditions; and (b) mesh.

other. To better illustrate that the proper convergence rate is obtained, a reference line of slope
log(4), corresponding to theory, is plotted. Note in Figure 4(b) that the error trajectories for
pressure and its sensitivities deviate slightly from the theoretical slope between the �rst and
second mesh. This simply indicates, that the grid resolution is not yet in the asymptotic range
of the numerical scheme on the �rst mesh. The second mesh is likely in that range since the
lines between meshes 2 and 3 are parallel to the reference theoretical solid line.

5.2. Pulsed �ow around a square cylinder

5.2.1. Problem statement. The computational domain and boundary conditions for this prob-
lem are shown in Figure 5(a). The mesh is shown in Figure 5(b) and was designed to provide
adequate �ow and sensitivity resolution. All computations reported here were performed on
this mesh. The in�ow velocity varies in time according to

Uf(t)=U0

(
1 + � sin

2�t
T�

)
(25)

where U0 is the time mean value of the free-stream velocity, � the amplitude of the sinusoidal
variation, and T� its period. These dimensionless parameters are set to

U0 = 1; �=0:4; T�=4 (26)

The initial conditions are obtained from a steady-state solution of the �ow and sensitivity
equations. The Reynolds number Re=�U0d=� is set to 100. Note that the mesh is adaptive
with respect to steady-state velocity and pressure �elds along with their sensitivities with
respect to U0. Parameters � and T� only make sense in a time-dependent context. Hence,
mesh adaptation on the steady-state initial conditions for sensitivities with respect to � and
T� cannot be done.
The time-step is set to �t=0:025 following the work of Sohankar [27]. This leads to 160

time-steps per period of the in�ow boundary condition (T�=4). Sensitivities are computed
with respect to U0, �, and T�. The only non-zero boundary condition for the sensitivities are
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those at the inlet. Implicit di�erentiation of Uf yields the following expressions at the inlet:

SU0u (t) =
@Uf
@U0

= 1 + � sin
2�t
T�

(27)

S�u (t) =
@Uf
@�

=U0 sin
2�t
T�

(28)

ST�u (t) =
@Uf
@T�

=U0�
(

−2�t
T 2�

)
cos

2�t
T�

(29)

5.2.2. Flow response. The harmonic variation of the in�ow boundary condition should induce
symmetrical vortex shedding. This is exactly what is observed in Figure 6 which presents
vorticity contours at various instants. Figure 7 shows the time variation of the in�ow velocity
and that of the �ow (velocity and pressure) at a point located on the symmetry axis one
diameter downstream of the cylinder (x=2; y=0). The signal is shown from time t=0 for
six periods of the in�ow variation. Notice that the transverse velocity v is zero, con�rming
that the �ow and vortex shedding are symmetric with respect to the x-axis. However, the
v-component drifts slightly away from zero near t=20, indicating that vortex shedding is
no longer perfectly symmetrical. The axial velocity u and the pressure p vary with a period
imposed by that of the in�ow boundary condition. The streamwise velocity u is in phase with
the in�ow and corresponds to the variations induced by the shed vortices. Notice that the
pressure is out of phase by �=2 with respect to the in�ow. This phase shift is explained by
looking at the mechanical energy equation (obtained by taking the dot product of the velocity
with the momentum equations) and by integrating it over the computational domain

d
dt

∫
�
�
u2

2
d�=

∫
@�
u · (� · n) d� +

∫
�
� : 1
2
(∇u+∇uT) d� +

∫
�
f · u d� (30)

where � is the stress tensor. Given the boundary conditions speci�ed in Figure 5(a), the �rst
term on the right-hand side reduces to a line integral along the in�ow boundary. For simplicity,
we assume that the work of viscous forces is small enough that the second integral can be
neglected. Finally, the third integral also vanishes because there are no body forces. The
kinetic energy equation then reduces to

d
dt

∫
�
�
u2

2
d�=

∫
inlet
utx d@� (31)

Now, away from the obstacle the �ow is approximately equal to the in�ow velocity so that
the left-hand side takes the form

d
dt

∫
�
�
u2

2
d�≈ d

dt

(
�
U 2
f

2
surf (�)

)
=�Uf

@Uf
@t
surf (�) (32)

where surf (�) is the surface area of the domain. The integral on the inlet of the domain can
also be simpli�ed to

utx=Uf

(
2�
@Uf
@x

− p
)
nx=Ufp (33)
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t = 16.00

t = 16.50

t = 18.00

t = 15.50

t = 17.00

t = 17.50

t = 18.50

t = 15.00

Figure 6. Symmetrical vortex shedding: vorticity contours.

This yields the following approximation for the pressure far from the obstacle:

p≈ x�@Uf
@t

= x��U0
2�
T�

(
cos

2�t
T�

)
(34)

The cosine in the right-hand side explains the �=2 phase shift of the pressure with respect
to the in�ow velocity Uf(t). The presence of the x term explains why the pressure contours
are nearly vertical almost everywhere as seen on Figure 8. The contours are plotted at t=15

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:817–844



830 H. HRISTOVA ET AL.

y

x
(x=2, y=0)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  5  10  15  20

u inlet

ve
lo

ci
ty

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20
-10

-5

 0

 5

 10

ve
lo

ci
ty

pr
es

su
re

u
v
p

time

time

Figure 7. Flow response at (x=2; y=0).

Figure 8. Pressure contours at t=15:0.

which corresponds to the minimum of Uf. Perturbations to contours in the wake are due to
the vortices travelling downstream from the obstacle.
To better visualize vortex shedding, vorticity contours are shown in Figure 6 over one

period T� corresponding to the shaded area on Figure 7. The points on the left-hand curves
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t = 35.0

t = 31.0

t = 27.0

t = 23.0

Figure 9. Karman vortex street at later times.

show the phase in the in�ow boundary condition. Two vortices form at the rear corners of the
square cylinder during the ascending phases of the pulsation and shedding occurs at the peak
of the pulsation. Vortices are then transported downstream in the wake during the descending
phase while two new vortices start building up. The �ow remains symmetric throughout the
�ow period as can be seen from the straight contours near the symmetry axis. Thus, the
dominant phenomena is symmetric vortex shedding induced by the �ow pulsation.
By looking carefully at Figure 7 one notices that v deviates slightly from zero near the

end of the simulation. A trend towards oscillation seems to be developing. The �ow is no
longer symmetric at time t=24, an indication that a transition of �ow regime is occurring.
The simulation was continued for three additional periods T�. Vorticity contours are shown
on Figure 9 at times t=23, 27, 31 and 35. The �ow becomes strongly non-symmetric and a
Karman vortex street is developing. This is to be expected as the wake of a square cylinder at
Re=100 is an unstable �ow. Because the critical Reynolds number for this �ow is Recr = 51
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x

y

(x=2,y=−0.7)

x

y

(x=2,y=0)

Figure 10. Location of points for extracting time signals.

[27], a vortex street would develop for constant in�ow boundary conditions. Here, the pulsation
at the in�ow acts as a trigger for vortex shedding. Obviously, the �nal periodic �ow will
depend on T�, the imposed pulsation period, and the obstacle natural shedding frequency.

5.2.3. Flow sensitivity responses. Time signals were extracted at two points located at (x=2;
y=0) on the symmetry axis and at (x=2; y=−0:7) o� the axis as shown in Figure 10. Time
evolution of sensitivity signals, �ow uncertainties, and fast nearby solutions will be shown at
these points.
The time signal at (x=2; y=0) of the �ow sensitivities with respect to �, T� and U0 are

shown on Figure 11. Figures are labelled as follows. The scale for the velocity sensitivities
su and sv is read on the vertical axis to the left while that for sp is found on the vertical axis
on the right-hand side of the plot. It should be obvious that velocity and pressure sensitivities
have di�erent units and that it is normal that they exhibit di�erent magnitudes. Note that
while the �ow showed a harmonic response at nearly all times in the interval [t=0; t=20],
sensitivities show deviation from this behaviour at much earlier times than the �ow itself.
Deviation from symmetry in the �ow signal appears at t=22 (Figure 7) while it occurs as
early as t=12 for the sensitivities. See Figure 11. We note the following:

• the period of the sensitivity signals is T�, the period of the in�ow pulsation,
• for parameters � and U0, the �rst period appears to be one of adjustment from the initial
steady-state �ow to the time-dependent regime,

• velocity and pressure sensitivities with respect to T� exhibit linearly increasing ampli-
tudes. This is to be expected since the in�ow boundary condition for ST�u =(−2�tU0�=T 2� )
cos(2�t=T�) is a linearly increasing function of time,

• The most striking feature is the behaviour of the v-sensitivities. While initially small,
they become sizable by the end of the simulation. This is especially visible for SU0v
which becomes larger than SU0u by the end of the simulation. See Figure 11. A similar
behaviour was observed in the time-signal of v, the transverse velocity component. This
phenomenon starts sooner with the sensitivities and shows a more pronounced amplitude.

• Sensitivities appear able to foretell the transition from symmetrical to asymmetrical vortex
shedding before it becomes visible in the �ow signal.

The behaviour of the pressure sensitivities can be explained by di�erentiating the approx-
imate expression for the pressure given in Equation (34). The behaviour of the sensitivities
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Figure 11. Time signal of sensitivities at (x=2:0; y=0:0): (a) parameter = �;
(b) parameter =T�; and (c) parameter =U0.

with respect to � and U0 is similar to that of the pressure p

S�p =
@p
@�

≈ x�U0 2�T� cos
(
2�t
T�

)

SU0p =
@p
@U0

≈ x��2�
T�
cos
(
2�t
T�

)

These are time-periodic harmonic variations of linear distributions in the streamwise direction.
The sensitivity with respect to T� behaves di�erently

ST�p =
@p
@T�

≈ x��U0 2�T 2�

[
2�t
T�
sin
(
2�t
T�

)
− cos

(
2�t
T�

)]
(35)

The presence of the sine and cosine functions of time explain the phase shift compared to
the other two sensitivities. Also, its amplitude increases with time due to the t multiplying
the sine function.
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(a)

(c)

(b)

(d)

Figure 12. Flow and sensitivities at t=10: (a) u; (b) v; (c) S�u ; and (d) S�v .

We complete this section with a description of spatial distributions of the �ow sensitivities.
Figures 12 and 13 shows contours of u and v and their sensitivities with respect to �;U0, and
T� at time t=10 when the �ow sensitivities are small according to Figure 11. Notice that all
solution �elds are symmetric. The sensitivities with respect to U0 exhibit the richest structure
(Figures 13(a) and (b)). Indeed, changing U0 amounts to changing the Reynolds number
of the �ow. The �elds of SU0v presents islands of alternating positive and negative values
corresponding to vortices in the wake. This plot indicates that increasing U0 will increase the
strength of the vortices and bring them closer to the wake centreline. As can be seen the
thickness of the wake decreases.
Sensitivities with respect to U0 and � exhibit similar structure in the sense that the e�ect

of a perturbation of the parameter is felt mostly in the wake of the square cylinder. This
is consistent as both parameters a�ect the magnitude of the in�ow or equivalently that of
the e�ective Reynolds number. Finally, the distributions of sensitivities to T� are di�erent
(Figures 13(c) and (d)). The e�ects of T� are con�ned to the vicinity of the cylinder because
T� determines the period of the pulsation and, hence, that of vortex shedding. Once shed,
vortices are transported by the mean �ow so that the wake shows little sensitivity to T�.

5.2.4. Uncertainty analysis. We now use sensitivity information to perform uncertainty anal-
ysis of the �ow. Uncertainties on U0 and � are cascaded through the CFD simulation to yield
uncertainty estimates of the velocity response. For simplicity we perform the uncertainty one
parameter at a time. Consider, for example, what happens to the u-velocity, when generic
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(a)

(c)

(b)

(d)

Figure 13. Sensitivities at t=10: (a) SU0u ; (b) SU0v ; (c) S
T�
u ; and (d) ST�v .

parameters a and b are subject to uncertainties �a and �b. The Taylor series are given by

u(x; y; a0 + �a+ �b) = u(x; y; a0; b0) +
@u
@a
�a+

@u
@b
�b

v(x; y; a0 + �a+ �b) = v(x; y; a0; b0) +
@v
@a
�a+

@v
@a
�a

which yields the following uncertainty estimates for u and v by the triangular inequality

�u(x; y)≈ |Sau |�a+ |Sbu |�b (36)

�v(x; y)≈ |Sav |�a+ |Sbv |�b (37)

Note that these expressions di�er from those found in textbooks on experimental uncertainty
analysis [28] which favour the use of RMS values

�u(x; y)≈ [(Sau�a)2 + (Sbu�b)]1=2 (38)

�v(x; y)≈ [(Sav �a)2 + (Sbv �b)]1=2 (39)

Both approaches are mathematically valid. Blackwell used Taylor series for uncertainty anal-
ysis [16] (i.e. Equations (36) and (37)). Note that Equations (36) and (37) yield bigger
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Figure 14. Uncertainty of �ow response at (x=2; y=0) for �=0:4 ± 0:02 (��=5%): (a) u and
its uncertainty intervals u± �u; and (b) v and its uncertainty intervals v± �v.

(pessimistic) uncertainty estimates than expressions (38) and (39). However, the latter are
more directly linked with statistical theories of uncertainty and uncertainty propagation. Note
that the two approaches yield identical results if only one parameter is considered in the
uncertainty analysis as is the case here.
We consider the following nominal values and uncertainties for parameters � and U0:

�=0:4± 0:02

U0 = 1:0± 0:02

This corresponds to 5% uncertainty on � and 2% on U0. We propagate the uncertainty one
parameter at a time for simplicity. That is for an arbitrary parameter we use the following
formula:

�u(x; y)≈ |Sau |�a

�v(x; y)≈ |Sav |�a

Figures 14 and 15 present the velocity uncertainties induced by � while Figures 16 and
17 show those due to the uncertainty in the free stream velocity U0. Results are given for
two points in the domain. The �rst one is located on the symmetry axis of the obstacle
(x=2; y=0) so that v is small. The second point is o�set in the transverse direction to a
location (x=2; y=−0:7) where v is larger. The equations of motion were integrated on a
longer time interval t=36 (9 periods T� instead of 6) to observe the behaviour of sensitivities
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Figure 15. Uncertainty of �ow response at (x=2; y=−0:7) for �=0:4 ± 0:02 (��=5%): (a) u and
its uncertainty intervals u± �u; and (b) v and its uncertainty intervals v± �v.

once the �ow has undergone its transition to a Von Karman street. Note that there are three
curves on each plot. The solid line is the time variation of the velocity component at the
nominal value of the parameter (�=0:4 in Figures 14 and 15, U0 = 1:0 in Figures 16 and 17).
The two dashed lines represent the uncertainty bands u(t)± �u(t) and v(t)± �u(t).
As can be seen the uncertainties of the �ow response are quite small until t=20 (later

for u). This is especially noticeable for v at the �rst point (x=2; y=0). After t=20, the
uncertainty bands increase in magnitude. This behaviour is more pronounced in the case of the
parameter U0 (Figures 16 and 17) than for � (Figures 14 and 15). For t¿30, the uncertainties
are so large that one may question the reliability of these estimates.

5.2.5. Fast evaluation of nearby �ows. We now show how sensitivities can be used for fast
evaluation of nearby �ows. We use the above parameter perturbations in linear Taylor series
and compare estimates of u and v to a full �ow analysis at the perturbed values of the
parameters. Results are shown in Figures 18 and 19 for perturbation of � and in Figures 20
and 21 for the case of a perturbation in U0. We compare the following �rst-order Taylor
series approximations for a generic parameter a

u(x; y; a0 + �a)≈ u(x; y; a0) + @u@a�a (40)

v(x; y; a0 + �a)≈ v(x; y; a0) + @v
@a
�a (41)

to a full blown simulation at the perturbed value of the parameter.
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Figure 16. Uncertainty of �ow response at (x=2; y=0) for U0 = 1 ± 0:02 (�U0 = 2%): (a) u and
its uncertainty intervals u± �u; and (b) v and its uncertainty intervals v± �v.
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Figure 17. Uncertainty of �ow response at (x=2; y=−0:7) for U0 = 1± 0:02 (�U0 = 2%): (a) u and
its uncertainty intervals u± �u; and (b) v and its uncertainty intervals v± �v.
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Figure 18. Fast nearby solution at (x=2; y=0) for �=0:42 (��=5%):
(a) u-velocity; and (b) v-velocity.

There are two curves on each plot. The solid line represents the true response of the �ow
at the perturbed value of the parameter (full re-analysis): �=0:42 for Figures 18 and 19;
and U0 = 1:02 for Figures 20 and 21. The dashed line is the �ow response estimated using
the linear Taylor series approximations (40) and (41). Figures 18 and 20 show the u and v
response for a point on the symmetry axis at (x=2; y=0) while Figures 19 and 21 are for
a point o� the axis at (x=2; y=−0:7).
The Taylor series approximations of the �ow response are in good agreement with the

CFD analysis at the perturbed values of the parameters at early times, t¡20. Agreement
deteriorates at later times. Agreement is better for perturbations in � than for perturbations
in U0. In the latter case, the Taylor series still yields good results at early times. The Taylor
series estimates are of poor quality for both u and v at later times when for t¿20.
An interesting property of these sensitivities is worth mentioning. Both sensitivities SU0v and

S�v at (x=2; y=0) sense the transition from symmetric vortex shedding to a Von Karman
vortex street much earlier than the �ow and in a more pronounced fashion. Compare the
signals for SU0v and S�v in Figures 18 and 20 to the signal of v on Figure 7. The departure
from zero occurs near t=22 for v while it occurs at t=12 for SU0v and S�v . Again, �ow
sensitivities appear able to foretell the transition from symmetrical to asymmetrical vortex
shedding before it becomes visible in the �ow signal.
We end this section with a look at the spatial distributions of the velocity extrapolations

obtained by Taylor series for parameter U0 compared to those obtained by a full �ow reanal-
ysis. We use a �xed value of �U0 = 0:02. Figure 22 compares the Taylor series extrapolation
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Figure 19. Fast nearby solution at (x=2; y=−0:7) for �=0:42 (��=5%):
(a) u-velocity; and (b) v-velocity.
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Figure 20. Fast nearby solution at (x=2; y=0) for U0 = 1:02 (�U0 = 2%):
(a) u-velocity; and (b) v-velocity.
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Figure 21. Fast nearby solution at (x=2; y=−0:7) for U0 = 1:02 (�U0 = 2%):
(a) u-velocity; and (b) v-velocity.

of v to that obtained by full reanalysis. The time value of t=15 corresponds to the mini-
mum of the pulsation at the in�ow while t=17 is at its peak. Comparisons are presented
for stations located at x=2, 4 and 6. Generally speaking, Taylor series estimates are in bet-
ter agreement with the true solution at time t=17 than at t=15. This is explained by the
fact that the �xed perturbation �U0 = 0:02 results in a smaller relative perturbation at the
peak of the pulsation (t=17) than at its minimum (t=15). Recall that the in�ow is given
by

Uf(t)=U0

(
1 + � sin

2�t
T�

)
(42)

with U0 = 1, �=0:4, T�=4. Thus Ufmin = 0:6 and Ufmax = 1:4. Hence, the associated relative
perturbations are 3% at t=15 and 1.4% at t=17. Note also that the agreement worsens
with increasing downstream distance. This may be due in part to the coarser mesh in the
downstream portion of the domain. Another possibility is the fact that streamwise distance
can be interpreted as a time axis since the signal travels downstream with the �ow. That is
there is a time delay between the instant a particle of �uid passes through the station located
at x=2 and and the time it goes by the station at x=6. The time delay being approximately
�x=U0 = 4. The spatial discrepancies appear to be consistent with the time signature of the
�ow response as seen on Figure 21.
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Figure 22. Extrapolated and true pro�les of v: (a) v(x=2; t=15); (b) v(x=2; t=17);
(c) v(x=4; t=15); (d) v(x=4; t=17); (e) v(x=6; t=15); and (f) v(x=6; t=17).

6. CONCLUSION

A general sensitivity equation formulation was developed for two-dimensional time-dependent
incompressible laminar �ows. The method was veri�ed on a problem with a closed form
solution to con�rm the temporal and spatial rates of convergence of the solver. Results indicate

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:817–844



A SENSITIVITY EQUATION METHOD FOR TIME-DEPENDENT FLOWS 843

optimal convergence rates for both the �ow and its sensitivities. This observation holds for
both the Euler and Crank–Nicholson time-stepping schemes.
The method was applied to pulsed �ow around a square cylinder. The �ow starts with

symmetrical vortex shedding due to the harmonic variation of the in�ow boundary condition.
The �ow then goes through a transition phase leading to the well known Karman vortex street
characterized by alternate vortex shedding. The �ow sensitivities are especially sensitive to
this �ow transition. Indeed, signs of transition to asymmetrical vortex shedding appear much
earlier in the sensitivity solution than in the �ow variable themselves. This indicates that
sensitivities are likely a very powerful tool to simulate and design optimal �ow controllers.
Sensitivities were also demonstrated as tool for uncertainty analysis and fast evaluation of
nearby �ows.
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